Call and Response Tessellation Series

Two Canadian tessellation artists. There aren’t that many of us. One in Ontario, the other in BC. No, we have never met, other than through social media and texting. Through these platforms we have learned about many other tessellation artists around the globe. I think Escher would have been impressed with all these artists, influenced by his work. Even corresponding, learning and collaborating with them. He would not have been alone “beyond the garden gate”*.

Which brings me to today.

Continue reading

Take the NEW tessellation class and leave a review!

In the previous five classes we learned the first three symmetry methods used in creating nested shape tessellations and patterns. Mirror, rotation and translation. This class introduces and explains in depth, the fourth symmetry operation, the glide reflection. It was one of M.C. Escher’s favourites, having accomplished 25 drawings using this symmetry method.

If you want a month’s free access to these classes…

Continue reading

KaleidoPaint iPad App Help

A new version of KaleidoPaint has arrived. Here you will find:

  1. A link to the side by side comparison of the new features vs. previous
  2. Jeff’s List of upgrades for V3.0
  3. Many youtube videos about tessellations
  4. Skillshare classes on the different symmetry groups
  5. Help files on previous versions
  6. Drawing a tessellation in each symmetry group
Continue reading

Hiking Season, hiker tessellations

From initial first lines to final print, with a funny twist at the end. A video, a short one, showing you the first two lines required to draw a most simple nested shape tessellation. It’s easy to draw tessellations if you have an iPad, the free KaleidoPaint App from the iTunes store and the magic sentence to get you started, one simple trick for each symmetry method.

Continue reading
Rubber Ducky tessellation

The Complete Rubber Ducky Collection — 18 tessellations!

The Complete Rubber Ducky Collection: a series of tessellations, eighteen of them, covering the complete range of classic tessellation symmetry groups, plus Elvis! All of these rubber ducky tessellations, all eighteen, were crafted and refined, in the space of fourteen days, from May 24, 2021, to the sixth of June. Quite a feat for me. When creativity is in the air sprinkled with intuition, follow the flow and take advantage of it, good things can happen. Where does this topic originate you ask? I have a rubber ducky on the handlebar of my bike. It squeaks and has flashy disco lights.

Continue reading

Re-Creating M.C. Escher’s Lizard #Tessellation

M.C. Escher’s Lizards are by far the most popular of Escher’s tessellations. It can be seen gracing many multitudes of surfaces, legally or illegally. From tattoos, puzzles, belt buckles, car wraps, flooring or landscaping stones… My initial introduction to tessellations was through redrawing this lizard in its nested shape during a class on crystallography at Carleton U. That was a few decades ago, in 1988. But, as I keep on repeating (no pun), to draw a tessellation or to truly understand the structure behind it are two different things.

Continue reading

Pentagonal tiling #tessellations, Part 3


Most of us learn the easy/best way. Look at the masters, follow their path and learn all that we can from them. Replicate their artwork. It is a long process, especially without any direction or assistance from a teacher. This is where I’m at right now — copying / learning from the pentagon symmetry system seekers: Reinhardt, Kershner, James, Rice, Stein, Mann, McLoud, and Von Derau. As I did for a while, copying M.C. Escher’s tessellations, decades ago, although I no longer need MCE inspiration to create a tessellation. Continue reading

Pentagonal tiling #tessellations, Part 2

My Pentagon Challenge is keeping  me busy. I am plowing my way through all of the pentagonal tiling types. Quite a few of them are built within either a perfect hexagon, or one that has been distorted beyond recognition. I am finding some interesting rules of symmetry I had not yet encountered. Wrapping my noggin around new concepts. Many of these symmetry types are skew-able, not only scale-able. Also, many of the anchor point for division lines inside hexagons are variable in their location, as long as the variable is kept constant for each pentagonal unit. Continue reading

Pentagonal tiling #tessellations, Part 1

Another challenge showing up on my desk, compliments of Woodpecker Carving. Hussein posted a beautiful Islamic geometric design, displaying the use of pentagons. But wait I thought, aren’t pentagons impossible to tile using the original seventeen symmetry groups? Or so I thought. I had seen intriguing examples of pentagonal tiles over the years, but I was still obsessed with M.C. Escher type nested shapes – and will always be. Continue reading