A few of the Louis Cubes I’ve put together over the past 10 years. It seems to be a recurring theme. A design I like to fall back on, when getting back into the tessellation groove. I seem to go Zen at this point.
Continue reading
A few of the Louis Cubes I’ve put together over the past 10 years. It seems to be a recurring theme. A design I like to fall back on, when getting back into the tessellation groove. I seem to go Zen at this point.
Continue readingA tessellation created inside a box of four different mirrors. I guess I like to challenge myself, if you take into account my distaste of symmetry methods that use multiple mirrors.
Continue readingQuite a revamp of the KaleidoPaint app. Here you will find side by side comparisons, for a quick review of the new features. Menus have changed, as well as their location. And we finally have folders! And. And.
Continue readingA new version of KaleidoPaint has arrived. Here you will find:
From initial first lines to final print, with a funny twist at the end. A video, a short one, showing you the first two lines required to draw a most simple nested shape tessellation. It’s easy to draw tessellations if you have an iPad, the free KaleidoPaint App from the iTunes store and the magic sentence to get you started, one simple trick for each symmetry method.
Continue readingSome tessellations are super simple. Especially if you use the free KaleidoPaint App from professor Jeff Weeks. This one took 60 seconds!
Continue readingIt’s been a very productive summer for my artwork. Garden might have suffered a bit, but the Garden Gnome tessellation told me it was all ok.
Continue readingThe Complete Rubber Ducky Collection: a series of tessellations, eighteen of them, covering the complete range of classic tessellation symmetry groups, plus Elvis! All of these rubber ducky tessellations, all eighteen, were crafted and refined, in the space of fourteen days, from May 24, 2021, to the sixth of June. Quite a feat for me. When creativity is in the air sprinkled with intuition, follow the flow and take advantage of it, good things can happen. Where does this topic originate you ask? I have a rubber ducky on the handlebar of my bike. It squeaks and has flashy disco lights.
Continue readingM.C. Escher’s Lizards are by far the most popular of Escher’s tessellations. It can be seen gracing many multitudes of surfaces, legally or illegally. From tattoos, puzzles, belt buckles, car wraps, flooring or landscaping stones… My initial introduction to tessellations was through redrawing this lizard in its nested shape during a class on crystallography at Carleton U. That was a few decades ago, in 1988. But, as I keep on repeating (no pun), to draw a tessellation or to truly understand the structure behind it are two different things.
Most of us learn the easy/best way. Look at the masters, follow their path and learn all that we can from them. Replicate their artwork. It is a long process, especially without any direction or assistance from a teacher. This is where I’m at right now — copying / learning from the pentagon symmetry system seekers: Reinhardt, Kershner, James, Rice, Stein, Mann, McLoud, and Von Derau. As I did for a while, copying M.C. Escher’s tessellations, decades ago, although I no longer need MCE inspiration to create a tessellation. Continue reading
There are three of them living under this ruff. They own the place. Yahoos when they are not gate guardians. Named this one Bibi, possibly for bierbelly. It is based in symmetry group P3 and the pentagons of Type 3, a hexagon split three ways. It’s a stretch from its original lines, but that is indeed where I started. Quite a simple tessellation with only a few lines. And a favourite tail twirl around a three-way rotation point – I’ve done that one quite a few times. Continue reading
My Pentagon Challenge is keeping me busy. I am plowing my way through all of the pentagonal tiling types. Quite a few of them are built within either a perfect hexagon, or one that has been distorted beyond recognition. I am finding some interesting rules of symmetry I had not yet encountered. Wrapping my noggin around new concepts. Many of these symmetry types are skew-able, not only scale-able. Also, many of the anchor point for division lines inside hexagons are variable in their location, as long as the variable is kept constant for each pentagonal unit. Continue reading
Another challenge showing up on my desk, compliments of Woodpecker Carving. Hussein posted a beautiful Islamic geometric design, displaying the use of pentagons. But wait I thought, aren’t pentagons impossible to tile using the original seventeen symmetry groups? Or so I thought. I had seen intriguing examples of pentagonal tiles over the years, but I was still obsessed with M.C. Escher type nested shapes – and will always be. Continue reading
I was approached by a student a few months ago — he was writing his dissertation and needed examples to illustrate the seventeen symmetry groups: Continue reading
Lots of reasons to celebrate!